Handbook
Glossary
BLAS interface matrix operations
Basic Linear Algebra Subroutines (BLAS) interface
Prev:
BLAS interface vector operations
Next:
Configuring the BLAS interface
Transposing and slicing matrices:
Mtranspose
( matrix -- matrix^T )
Mrows
( A -- rows )
Mcols
( A -- cols )
Msub
( matrix row col height width -- sub )
Matrix-vector products:
n*M.V+n*V!
( alpha A x beta y -- y=alpha*A.x+b*y )
n*M.V+n*V
( alpha A x beta y -- alpha*A.x+b*y )
n*M.V
( alpha A x -- alpha*A.x )
M.V
( A x -- A.x )
Vector outer products:
n*V(*)V+M!
( alpha x y A -- A=alpha*x(*)y+A )
n*V(*)Vconj+M!
( alpha x y A -- A=alpha*x(*)yconj+A )
n*V(*)V+M
( alpha x y A -- alpha*x(*)y+A )
n*V(*)Vconj+M
( alpha x y A -- alpha*x(*)yconj+A )
n*V(*)V
( alpha x y -- alpha*x(*)y )
n*V(*)Vconj
( alpha x y -- alpha*x(*)yconj )
V(*)
( x y -- x(*)y )
V(*)conj
( x y -- x(*)yconj )
Matrix products:
n*M.M+n*M!
( alpha A B beta C -- C=alpha*A.B+beta*C )
n*M.M+n*M
( alpha A B beta C -- alpha*A.B+beta*C )
n*M.M
( alpha A B -- alpha*A.B )
M.
( A B -- A.B )
Scalar-matrix products:
n*M!
( n A -- A=n*A )
n*M
( n A -- n*A )
M*n
( A n -- A*n )
M/n
( A n -- A/n )
Literal syntax:
smatrix{
dmatrix{
cmatrix{
zmatrix{