BLAS interface matrix operations
Basic Linear Algebra Subroutines (BLAS) interface

Prev:BLAS interface vector operations
Next:Configuring the BLAS interface


Transposing and slicing matrices:
Mtranspose ( matrix -- matrix^T )

Mrows ( A -- rows )

Mcols ( A -- cols )

Msub ( matrix row col height width -- sub )


Matrix-vector products:
n*M.V+n*V! ( alpha A x beta y -- y=alpha*A.x+b*y )

n*M.V+n*V ( alpha A x beta y -- alpha*A.x+b*y )

n*M.V ( alpha A x -- alpha*A.x )

M.V ( A x -- A.x )


Vector outer products:
n*V(*)V+M! ( alpha x y A -- A=alpha*x(*)y+A )

n*V(*)Vconj+M! ( alpha x y A -- A=alpha*x(*)yconj+A )

n*V(*)V+M ( alpha x y A -- alpha*x(*)y+A )

n*V(*)Vconj+M ( alpha x y A -- alpha*x(*)yconj+A )

n*V(*)V ( alpha x y -- alpha*x(*)y )

n*V(*)Vconj ( alpha x y -- alpha*x(*)yconj )

V(*) ( x y -- x(*)y )

V(*)conj ( x y -- x(*)yconj )


Matrix products:
n*M.M+n*M! ( alpha A B beta C -- C=alpha*A.B+beta*C )

n*M.M+n*M ( alpha A B beta C -- alpha*A.B+beta*C )

n*M.M ( alpha A B -- alpha*A.B )

M. ( A B -- A.B )


Scalar-matrix products:
n*M! ( n A -- A=n*A )

n*M ( n A -- n*A )

M*n ( A n -- A*n )

M/n ( A n -- A/n )


Literal syntax:
smatrix{

dmatrix{

cmatrix{

zmatrix{