koszul vocabulary
Factor handbook > Vocabulary index


Summary
Lie algebra cohomology

Meta-data
Authors:Slava Pestov


Words

Symbol words
boundaries
terms


Ordinary words
WordStack effect
(alt+)( x -- )
(alt.)( basis n -- str )
(bigraded-ker/im-d)( u-deg z-deg bigraded-basis -- null/rank )
(d)( product -- value )
(graded-ker/im-d)( n seq -- null/rank )
(interior)( y basis-elt -- i_y[basis-elt] )
(inversions)( n seq -- n )
(op-matrix)( range quot basis-elt -- row )
(tensor)( seq1 seq2 -- seq )
(wedge)( n basis1 basis2 -- n basis )
-1^( m -- n )
>alt( obj -- vec )
?m+( m1 m2 -- m3 )
alt*n( vec n -- vec )
alt+( x y -- x+y )
alt.( assoc -- )
basis( generators -- seq )
bigraded-basis.( seq -- )
bigraded-betti( u-generators z-generators -- seq )
bigraded-ker/im-d( basis -- seq )
bigraded-laplacian( u-generators z-generators quot -- seq )
bigraded-laplacian-betti( u-generators z-generators -- seq )
bigraded-laplacian-kernel( u-generators z-generators -- seq )
bigraded-triple( u-deg z-deg bigraded-basis -- triple )
bigraded-triples( grid -- triples )
canonicalize( assoc -- assoc' )
d( x -- dx )
d-matrix( domain range -- matrix )
d=( value basis -- )
dim-im/ker-d( domain range -- null/rank )
dx.y( x y -- vec )
empty-matrix?( matrix -- ? )
get-boundary( basis -- value )
graded( seq -- seq )
graded-basis.( seq -- )
graded-betti( generators -- seq )
graded-ker/im-d( graded-basis -- seq )
graded-laplacian( generators quot -- seq )
graded-laplacian-betti( generators -- seq )
graded-laplacian-kernel( generators -- seq )
graded-triple( seq n -- triple )
graded-triples( seq -- triples )
interior( x y -- i_y[x] )
inversions( seq -- n )
laplacian-betti( basis1 basis2 basis3 -- n )
laplacian-kernel( basis1 basis2 basis3 -- basis )
laplacian-matrix( basis1 basis2 basis3 -- matrix )
linear-op( vec quot -- vec )
m'.m( matrix -- matrix' )
m.m'( matrix -- matrix' )
nth-basis-elt( generators n -- elt )
num-alt.( n -- str )
op-matrix( domain range quot -- matrix )
permutation( seq -- perm )
tensor( graded-basis1 graded-basis2 -- bigraded-basis )
wedge( x y -- x.y )
with-terms( quot -- hash )
x.dy( x y -- vec )


Files